Inferring gene regulatory networks from multiple microarray datasets
نویسندگان
چکیده
منابع مشابه
Inferring gene regulatory networks from multiple microarray datasets
MOTIVATION Microarray gene expression data has increasingly become the common data source that can provide insights into biological processes at a system-wide level. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to a large number of genes, which makes the problem of inferring gene regulatory network an ill-posed one. On the othe...
متن کاملConsensus gene regulatory networks: combining multiple microarray gene expression datasets
In this paper we present a method for modelling gene regulatory networks by forming a consensus Bayesian network model from multiple microarray gene expression datasets. Our method is based on combining Bayesian network graph topologies and does not require any special pre-processing of the datasets, such as re-normalisation. We evaluate our method on a synthetic regulatory network and part of ...
متن کاملInferring Gene Regulatory Networks from Asynchronous Microarray Data
Modern approaches to treating genetic disorders, cancers and even epidemics rely on a detailed understanding of the underlying gene signaling network. Previous work has used time series microarray data to infer gene signaling networks given a large number of accurate time series samples. Microarray data available for many biological experiments is limited to a small number of arrays with little...
متن کاملInferring pairwise regulatory relationships from multiple time series datasets
MOTIVATION Time series expression experiments have emerged as a popular method for studying a wide range of biological systems under a variety of conditions. One advantage of such data is the ability to infer regulatory relationships using time lag analysis. However, such analysis in a single experiment may result in many false positives due to the small number of time points and the large numb...
متن کاملConsensus and Meta-analysis regulatory networks for combining multiple microarray gene expression datasets
Microarray data is a key source of experimental data for modelling gene regulatory interactions from expression levels. With the rapid increase of publicly available microarray data comes the opportunity to produce regulatory network models based on multiple datasets. Such models are potentially more robust with greater confidence, and place less reliance on a single dataset. However, combining...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2006
ISSN: 1460-2059,1367-4803
DOI: 10.1093/bioinformatics/btl396